
7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 1/44

PostgreSQL Migration with Database
Migration Service
This document describes how to migrate a PostgreSQL instance and its databases using the
Database Migration Service (/database-migration). It outlines various preparation steps and best
practices for the whole migration process, including caveats and issues. This document is for
data architects and engineers responsible for migrating PostgreSQL to Cloud SQL for
PostgreSQL. The document also includes instructions for accomplishing a full migration of
PostgreSQL to Cloud SQL for PostgreSQL.

Managing homogeneous database migration

The Database Migration Service for PostgreSQL (/database-migration/docs/postgres) implements
the homogeneous database migration of all databases in a source PostgreSQL instance into a
Cloud SQL for PostgreSQL instance. That Cloud SQL for PostgreSQL instance is purposely
created as the target instance. The following diagram shows the �ow of information:

Database
migration
service

PostgreSQL
Cloud SQL

Source environment

\ PostgreSQL

Database Migration Service is a managed Google Cloud service. It provides a graphical user
interface to set up and start the database migration process as well as to cut over to the target
instance. After the migration is complete, Database Migration Service promotes the target
instance to be the new source instance.

Database Migration Service migrates all databases from the source instance to the target
instance within the same migration job. This method avoids having to create an individual
migration job for each database. Before you migrate, you have to prepare the source instance
and the source databases. This document discusses those preparations later.

https://cloud.google.com/database-migration
https://cloud.google.com/database-migration/docs/postgres

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 2/44

Database Migration Service supports migration across versions
 (/database-migration/docs/postgres/cross-version-support) as well.

The target instance, databases, and tables with primary keys are automatically created and
migrated by Database Migration Service. Tables without primary keys are not. The Migrating
tables without a primary key (#migrating-tables-without-pk) section discusses that topic.

Because Database Migration Service is fully managed, it doesn't require any operational or
management oversight. A user can fully focus on de�ning and running the database migration.

Database migration overview

In general, database migration is a multi-step process. The basic steps are described here. The
detailed steps you must take to migrate a database appear later in the document.

1. Prepare the source instance and databases

Apply settings that allow for a zero downtime migration; Database Migration
Service requires these settings.

Install pglogical (https://www.2ndquadrant.com/en/resources/pglogical/).

2. Specify the migration job

The migration job speci�cation de�nes the following items:

Source and target instances

Network connectivity

Additional parameters required to set up a migration

The migration job speci�cation also provides a connectivity test to ensure that the
Database Migration Service service can reach the source instance.

3. Plan to migrate non-primary-key tables

Create a migration strategy for each table that doesn't have a primary key before
starting the migration job.

4. Prepare for additional exceptions

https://cloud.google.com/database-migration/docs/postgres/cross-version-support
https://www.2ndquadrant.com/en/resources/pglogical/

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 3/44

In addition to non-primary key tables, other objects might require special attention;
see Preparing to run the database migration job (#prep-the-db-migration).

5. Start the migration job

Start the data migration after you complete and successfully test your migration job
setup tasks.

�. Validate migrated data (optional)

After you have migrated the data and quiesced the source instance to prevent
further changes, optionally verify that all data is in the target instance and its
databases.

7. Promote the target instance

After the data migration is complete and optionally validated, promote the target
instance to the new primary instance.

�. Migrate applications to new primary instance

Migrate the applications that were originally connected to the source instance to
the new primary instance.

9. Tune the primary instance

To optimize performance, tune the primary instance after the applications begin to
use it.

10. Set up high availability and disaster recovery

Depending on the requirements, think about enabling disaster recovery with cross-
region replicas for the new primary instance.

These steps are described in detail throughout this article so that you can fully understand all
aspects of the complete database migration process in the context of Database Migration
Service for PostgreSQL.

Assumptions and expectations

This section describes the assumptions and expectations necessary to to migrate a
PostgreSQL instance and its databases using the instructions in this document.

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 4/44

Database engine version

The following instructions are written for PostgreSQL 13. The source PostgreSQL instance
runs on Compute Engine. The target Cloud SQL for PostgreSQL version is also version 13.

If you use earlier versions of PostgreSQL, especially version 9.4 or 9.6, this document doesn't
apply completely to your case. See Con�gure your source
 (/database-migration/docs/postgres/con�gure-source-database) for more information about those
differences.

Resta� the source instance

A basic assumption is that you want to minimize the number of times you restart the source
instance. Based on this assumption, the article distinguishes between con�guration reloads
and instance restarts. If it's possible for you to avoid source instance restarts by delaying them
and waiting for an instance restart that you can't avoid, the document indicates it.

Migrate all databases

Because it's impossible for you to only migrate a subset of the databases in a PostgreSQL
instance, the article assumes that you migrate all databases in an instance.

If you want to migrate only a subset of the databases from the source instance, remove the
databases you don't want before starting the migration. Alternatively, you can migrate all
databases and drop the databases you don't want from the target instance once the migration
completes.

Each approach has trade offs: Moving databases to different instances before the migration
might require changing application con�gurations and other processes that access the source
instance. Dropping databases after migration leaves the source environment unaffected, but
affects the cost and timing of the migration.

Migrate tables without primary keys

Tables in databases that don't have a primary key aren't migrated automatically by Database
Migration Service. You must manually migrate them. The Migrating tables without a primary
key (#migrating-tables-without-pk) section outlines different strategies.

https://cloud.google.com/database-migration/docs/postgres/configure-source-database

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 5/44

Extensions, large objects, and external wrappers

Check whether all the features that you use in your source databases are available in Cloud
SQL for PostgreSQL. For all data-type and data-storage approaches you use (like external
wrappers), check if pglogical can migrate them or if you have to manually migrate them. For
more information, see Preparing to run the database migration job (#prep-the-db-migration).

Costs

This tutorial uses the following billable components of Google Cloud:

Compute Engine (/compute/all-pricing)

Cloud SQL for PostgreSQL (/sql/pricing#pg-pricing)

To generate a cost estimate based on your projected usage, use the pricing calculator
 (/products/calculator).

Before you begin

1. In the Google Cloud Console, on the project selector page, select or create a Google
Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

Go to project selector (https://console.cloud.google.com/projectselector2/home/dashboard)

2. Make sure that billing is enabled for your Cloud project. Learn how to con�rm that billing
is enabled for your project (/billing/docs/how-to/modify-project).

Preparing a database migration

https://cloud.google.com/compute/all-pricing
https://cloud.google.com/sql/pricing#pg-pricing
https://cloud.google.com/products/calculator
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 6/44

The following instructions show you how to migrate two databases from one source instance.
The databases contain regular tables with primary keys, and tables without primary keys.

The instructions help create a source PostgreSQL instance to go through a full database
migration with Database Migration Service.

In a production environment, you should already have a source instance that provides a
speci�c throughput and latency to the clients of the various databases.

Source instance access

As you prepare for the migration, ensure that you have su�cient access privileges. You need
the appropriate privileges to perform all necessary changes to the source instance and source
databases.

Examples of changes that you might have to make appear throughout this document.

Target instance con�guration

The database migration job speci�cation asks for con�guration information for the target
Cloud SQL instance. Providing that information is a best practice. The con�guration
information helps ensure that your application performs as expected on a Cloud SQL for
PostgreSQL instance.

You can best ensure that the instance meets performance requirements by testing the
application on a Cloud SQL instance that's con�gured to meet your throughput and latency
requirements. After you have �nished your testing and determined the needed Cloud SQL
con�guration, note down all con�guration settings. You need them when specifying a database
migration job (#specifying-a-database-migration-job).

If you don't initially test the application, an alternative approach is to con�gure the target
instance like the source instance when creating the migration job. After the cutover completes
and the application is accessing the target instance's databases, you can tune the databases.
Be aware, however, that this tuning step could possibly occur during production.

Network connectivity

Database Migration Service supports different types of network connectivity
 (/database-migration/docs/postgres/con�gure-connectivity). The target instance is a replica of the

https://cloud.google.com/database-migration/docs/postgres/configure-connectivity

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 7/44

source instance and therefore it must be able to connect.

Ensure that your environment supports one of the connectivity types so that you can con�gure
those connectivity types during the migration job speci�cation.

Database schema changes

There are three types of schema changes (https://www.postgresql.org/docs/current/ddl.html):

Changing an existing schema: For example, users can change an existing table by
adding a column.

Adding schema elements: For example, users can add a new table schema.

Removing schema elements: For example, users can drop an existing table schema.

Determine if any of these types of changes can happen during database migration. If they can,
use the information in the Manage schema changes (#manage_schema_changes) section to
make the changes.

Overview of a�ifacts for database migration

The following diagram shows the major database migration artifacts and how they are
interrelated. It doesn't show the database tables of the various databases:

https://www.postgresql.org/docs/current/ddl.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 8/44

The source instance in the preceding diagram consists of two databases. It also contains two
con�guration �les, pg_hba.conf and postgresql.conf, that you might have to change to
migrate data with Database Migration Service.

A Database Migration Service migration job refers to a connection pro�le for the source
instance. This pro�le refers to the source instance. A Database Migration Service migration job
also refers to a Cloud SQL target instance. The target instance is a replica of the source
instance (indicated by the dashed arrow).

The target instance connects to the source instance. The source instance must be accessible
by the IP address of the target instance. If a �rewall is present, it has to allow the IP address of
the target Cloud SQL for PostgreSQL instance to connect to the source instance.

Completing these instructions creates a source instance on a Compute Engine VM. To connect
to the source instance, you must open the �rewall for the IP address the target instance uses.

To demonstrate how to move tables without primary keys, the following example assumes that
not all tables have primary keys and that you manually migrate those kinds of tables.

Creating a source PostgreSQL instance

The following steps create an example source PostgreSQL instance. You can follow the
instructions to create a new example instance, or use an existing instance.

1. In Cloud Shell, create a Compute Engine instance:

2. Use SSH to connect to the Compute Engine instance.

3. Follow the instructions (https://www.postgresql.org/download/linux/ubuntu/) to download and
to install PostgreSQL for Ubuntu.

gcloud beta compute instances create pg-source-1 \

--zone=us-west1-b \

--machine-type=e2-standard-2 \

--image=ubuntu-2004-focal-v20210223 \

--image-project=ubuntu-os-cloud \

--boot-disk-size=10GB

https://www.postgresql.org/download/linux/ubuntu/

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 9/44

4. Sign in to the PostgreSQL shell:

5. Query the server version:

Write down the major version. Use it when you specify a migration job.

�. List the databases and observe that the standard databases are present:

The output is similar to the following list of databases:

Create sample source databases

1. In the PostgreSQL instance, create two databases:

2. Con�rm their creation:

sudo -u postgres psql

show server_version;

\l

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+---------+---------+----------------------

 postgres | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 template0 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres

 | | | | | postgres=CTc/postgres

 template1 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres

 | | | | | postgres=CTc/postgres

CREATE DATABASE dmspg_1;

CREATE DATABASE dmspg_2;

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 10/44

The output is similar to the following list of databases:

3. Connect to the �rst database and create two tables in each database:

4. Con�rm that the system created the database tables:

The output is similar to the following list of relations:

\l

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+---------+---------+----------------------

 dmspg_1 | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 dmspg_2 | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 postgres | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 template0 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres

 | | | | | postgres=CTc/postgres

 template1 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres

 | | | | | postgres=CTc/postgres

(5 rows)

\c dmspg_1

CREATE TABLE accounts (

 user_id VARCHAR(128) PRIMARY KEY,

 username VARCHAR (128) NOT NULL);

CREATE TABLE notes (

 note VARCHAR(256));

\dt

 List of relations

 Schema | Name | Type | Owner

--------+----------+-------+----------

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 11/44

5. Insert some rows into the tables:

Note that the same row is added twice to the notes table because it doesn't have a
primary key to prevent duplicates.

�. Con�rm that the rows were inserted into the tables:

7. Create the same tables and insert the same rows into the second database dmspg_2. If
you would like to have different tables in the second database, create them.

�. Exit the PostgreSQL shell:

At this point, the instance contains two databases with two tables each. One of the tables
doesn't have a primary key and two rows have the same value. This lets you verify that the
suggested migration approach (#migrating-tables-without-pk) works.

 public | accounts | table | postgres

 public | notes | table | postgres

(2 rows)

INSERT INTO accounts (user_id, username)

 VALUES('one','Alice');

INSERT INTO accounts (user_id, username)

 VALUES('two','Bob');

INSERT INTO notes (note)

 VALUES('Initial note');

INSERT INTO notes (note)

 VALUES('Second note');

INSERT INTO notes (note)

 VALUES('Second note');

SELECT * FROM accounts;

SELECT * FROM notes;

exit;

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 12/44

Prepare the source instance and databases

Database Migration Service requires speci�c preparation steps for the source instance, and for
the databases (/database-migration/docs/postgres/con�gure-source-database). In the following
section, preparing the source instance and preparing the source databases are discussed
separately.

Prepare the source instance

After con�guring the source instance, reload it to apply the new con�guration values.

1. In Cloud Shell, use SSH to connect to the Compute Engine instance.

2. Install pglogical by following these instructions: Installation Instructions for pglogical
 (https://www.2ndquadrant.com/en/resources/pglogical/pglogical-installation-instructions/).

The installation step for PostgreSQL 13 on Ubuntu is as follows:

3. Log in to the PostgreSQL shell:

4. Run the following commands to change the con�guration of the instance (the code
sample uses the default PostgreSQL values):

See Con�gure your source
 (/database-migration/docs/postgres/con�gure-source-database#pglogical) for a discussion
about deciding on the values that apply to your situation.

sudo apt-get install postgresql-13-pglogical

sudo -u postgres psql

ALTER SYSTEM SET shared_preload_libraries = 'pglogical';

ALTER SYSTEM SET wal_level = 'logical';

ALTER SYSTEM SET max_replication_slots = 10;

ALTER SYSTEM SET max_wal_senders = 10;

ALTER SYSTEM SET max_worker_processes = 8;

https://cloud.google.com/database-migration/docs/postgres/configure-source-database
https://www.2ndquadrant.com/en/resources/pglogical/pglogical-installation-instructions/
https://cloud.google.com/database-migration/docs/postgres/configure-source-database#pglogical

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 13/44

5. Reload the instance con�guration:

�. Check if an instance restart is required for one of the con�gurations:

As a best practice, check all the settings that you set. Doing so helps ensure that you only
restart the instance if one or more setting changes requires it.

The output is as follows:

The output shows that pending_restart is true. That means a reload of the
con�guration is insu�cient and an instance restart is required.

7. Exit from psql:

�. Restart the instance from the ssh shell:

This is an instance restart. It affects the accessing database clients. You can consider
delaying the instance restart at this point until you know that there are no other additional
con�guration changes that also require an instance restart, for example, connecting to an

SELECT * FROM pg_reload_conf();

SELECT pending_restart FROM pg_settings WHERE name = 'max_replication_slots

pending_restart

 t

(1 row)

exit;

sudo systemctl restart postgresql@13-main

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 14/44

instance from an IDE (#connecting-from-ide) or de�ning a connectivity method
 (#de�ne_a_connectivity_method).

9. To check that the con�guration is correct, log in to psql again:

10. Check that the con�guration values are set to the values you speci�ed earlier:

The output is similar to:

sudo -u postgres psql

SHOW shared_preload_libraries;

SHOW wal_level;

SHOW max_replication_slots;

SHOW max_wal_senders;

SHOW max_worker_processes;

shared_preload_libraries

pglogical

(1 row)

postgres=# SHOW wal_level;

wal_level

logical

(1 row)

postgres=# SHOW max_replication_slots;

max_replication_slots

11

(1 row)

postgres=# SHOW max_wal_senders;

max_wal_senders

10

(1 row)

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 15/44

11. Exit the PostgreSQL shell:

Create a migration user

In order to migrate the source databases, a user must have certain privileges on all user
databases. In the following steps, you create a migration user for this purpose. If you already
have a user de�ned in the instance for this purpose, skip these steps and use that user pro�le.

After the migration completes, this user no longer serves a purpose. You can remove it from
the source instance.

1. In Cloud Shell, log in to the PostgreSQL shell:

2. Create the migration user dbmig:

3. Set the replication role:

4. Exit the PostgreSQL shell:

postgres=# SHOW max_worker_processes;

max_worker_processes

8

(1 row)

exit;

sudo -u postgres psql

CREATE USER dbmig WITH ENCRYPTED PASSWORD 'dbmig';

ALTER USER dbmig WITH REPLICATION;

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 16/44

You might require the user postgres to have a password. The command that sets an example
password is ALTER USER postgres PASSWORD 'postgres'. In general it's a good practice to
set passwords for users, so we highly recommend it. If you require a password login and not a
peer login, you must change the pg_hba.conf �le (located at
/etc/postgresql/13/main/pg_hba.conf). See the pg_hba.conf�le
 (https://www.postgresql.org/docs/current/auth-pg-hba-conf.html), for more information.

If you plan to connect to any database during the tutorial, set the password for postgres now
so that you don't have to come back to this section.

Prepare the user databases

After the instance is con�gured, every user database within it requires con�guration
 (/database-migration/docs/postgres/con�gure-source-database). This includes the two databases
that you created earlier (dmspg_1 and dmspg_2) and postgres.

1. In Cloud Shell, log in to the PostgreSQL shell:

2. List all user databases:

This step helps to ensure that you can see all the user databases. You start to con�gure
them in the next step.

3. Connect to each <user_database> (except for template0 and template1) and run the
following commands:

exit;

sudo -u postgres psql

\l

\c <user_database>

CREATE EXTENSION IF NOT EXISTS pglogical;

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://cloud.google.com/database-migration/docs/postgres/configure-source-database

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 17/44

4. Determine all user schemas in each user database:

If you followed the instructions so far and didn't create schemas, the only schema in
each database is public and pglogical.

5. Run the following commands (in each user database) for each <schema> that isn't
pglogical:

�. Run the following commands for the pglogical schema in each user database:

The Database Migration Service migration job that you specify later only migrates user
database tables that have a primary key. You must manually migrate the tables in each
user database that don't have a primary key.

7. In each user database, determine all tables that don't have a primary key.

a. List all databases:

b. The user databases are dmspg_1, dmspg_2, and postgres. For each, run the
following query as outlined in Debugging and other tools
 (/database-migration/docs/postgres/debugging-tools#�nd_tables_without_primary_keys_pks)

:

\dn

GRANT USAGE on SCHEMA <schema> to dbmig;

GRANT SELECT on ALL TABLES in SCHEMA <schema> to dbmig;

GRANT SELECT on ALL SEQUENCES in SCHEMA <schema> to dbmig;

GRANT USAGE on SCHEMA pglogical to dbmig;

GRANT SELECT on ALL TABLES in SCHEMA pglogical to dbmig;

\l

https://cloud.google.com/database-migration/docs/postgres/debugging-tools#find_tables_without_primary_keys_pks

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 18/44

The result lists all schemas and for each schema the tables that don't have a
primary key. Ignore the pglogical schema. Write down all the databases and
tables listed in the schemas that aren't pglogical. At this point, the notes table in
the dmspg_1 schema and in the dmspg_2 doesn't have a primary key.

�. Exit the PostgreSQL shell:

At this point, you have prepared the source instance and the source databases. They are ready
for migration by Database Migration Service.

Connecting to the instance from the IDE

All instructions in this section are optional. Only follow them if you would like to connect to the
instance and its databases using an IDE like DBeaver (https://dbeaver.io/). The instructions open
the �rewall for the IP address of your client device and con�gure PostgreSQL to accept
connection requests from it.

1. Determine the IP address of your device. Search
 (https://www.google.com/search?q=what+is+my+ip+address) for pages that display your IP
address and write it down (unless you know the device's IP address already).

select tab.table_schema,

 tab.table_name

from information_schema.tables tab

left join information_schema.table_constraints tco

 on tab.table_schema = tco.table_schema

and tab.table_name = tco.table_name

and tco.constraint_type = 'PRIMARY KEY'

where tab.table_type = 'BASE TABLE'

and tab.table_schema not in ('pg_catalog',

'information_schema')

and tco.constraint_name is null

order by table_schema,

 table_name;

exit;

https://dbeaver.io/
https://www.google.com/search?q=what+is+my+ip+address

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 19/44

2. In Cloud Shell, run the following command to open the �rewall for your IP address and
TCP port 5432:

Replace the following: device-ip: your device's IP address

3. Use SSH to connect to the VM that runs the PostgreSQL instance.

4. Add your device IP address to the list of devices from which connections are allowed:

a. Open the pg_hba.conf �le, which is typically in the /etc/postgresql/13/main
directory.

b. Add a line that contains your device IP address to the # IPv4 local connections
section.

c. Copy the line that allows the IP address 127.0.0.1 to connect.

d. Paste the line into the con�guration �le.

e. Modify it to include your device's IP address.

f. Terminate the IP address with /32.

5. Add the addresses that the PostgreSQL instance should listen to:

a. Open the postgresql.conf �le, which is typically in the
/etc/postgresql/13/main directory.

b. Find the commented entry listen_addresses.

c. Modify it to specify the addresses that the PostgreSQL instance should listen to.

d. Set the address to '*' so that any connection is accepted:

This change requires you to restart
 (https://www.postgresql.org/docs/current/runtime-con�g-connection.html) the source instance.

gcloud compute firewall-rules create my-device \

--allow tcp:5432 \

--source-ranges=device-ip

listen_addresses = '*'

https://www.postgresql.org/docs/current/runtime-config-connection.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 20/44

�. Restart the source instance:

After the instance restart, it's possible to connect to the databases in the instance from
your device.

Later, Database Migration Service publishes the IP address of the target instance that needs to
access the source instance to perform the data migration. To avoid restarting the source
instance again, you can wait to perform the steps that open the source instance to your device
until that point. Then, restarting the instance once accomplishes both changes at the same
time (or even includes the con�guration changes you made earlier).

If you opened the source instance to '*', then another target instance restart isn't required. If
you listed speci�c IP addresses, wait until the target instance IP address is available to avoid
one instance restart.

All source instance and database preparations are now complete. You can now create a
source instance connection pro�le. After that's complete, migrate the PostgreSQL instance.

Creating a source connection pro�le

Before creating a database migration job, create a source instance connection pro�le.

The following instructions are based on the Cloud Console user interface.

1. In the Cloud Console, go to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select Connection pro�les and then click Create Pro�le.

3. From the drop-down list, select PostgreSQL.

4. Fill in the �elds:

Connection pro�le name: Use the same name as the compute instance.

sudo systemctl restart postgresql@13-main

https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 21/44

Hostname or IP address: Use the public IP address of the Compute Engine
instance that runs your PostgreSQL instance.

Username: Use the database migration user that you created earlier.

5. Click Create.

�. Check that the connection pro�le ID you created appears in the list of connection
pro�les.

Now that a connection pro�le exists that corresponds to the source PostgreSQL instance, you
can refer to the pro�le by its name.

Specifying a database migration job

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 22/44

To specify a database migration job, complete the following steps:

1. In Cloud Console, go to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select Migration jobs and then click Create Migration Job.

3. Review the steps you must perform to specify a migration job.

If you want to read more, you can �nd additional information in Specifying a database
migration job (/database-migration/docs/postgres/create-migration-job).

Describe your migration job

This step collects basic con�guration information.

1. In Cloud Console, �ll in the various input �elds:

a. Migration job name: Provide a name for the migration job. A best practice is to
append some numbering scheme to the name or some other indicator. You might
have to specify a few migration jobs for your testing purposes.

b. Source database engine: Select PostgreSQL as the source database engine.

c. Destination region: Select the destination region for the target Cloud SQL for
PostgreSQL instance.

d. Migration job type: Select the migration type that you want to perform from the
drop-down list.

e. Review the prerequisites to be sure that you meet all requirements.

2. Click Save & Continue.

De�ne a source

This step con�gures the source instance connection. The screen appears when you complete
the previous step.

1. In Cloud Console, use the following screen to de�ne a source:

https://console.cloud.google.com/dbmigration/migrations
https://cloud.google.com/database-migration/docs/postgres/create-migration-job

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 23/44

The drop-down list shows the available connection pro�les. It also gives you the option to
create a connection pro�le.

2. Select the pg-source-1 connection pro�le that you created earlier. The screen expands.

3. Click Save & Continue.

Create a destination

In this section, you con�gure the target instance.

1. In Cloud Console, navigate to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Create a destination. Provide a name, a root password, and select a target instance
version. Ensure that you record the root password for future use.

https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 24/44

 Important: Write down your root password. It's required to log in to the target instance.

You can't change the instance name after you create it. The name you provide is the
name of the new primary instance after the migration completes. The best practice is to
name it for its role as a primary instance, not for its temporary role as a migration target
(as we have done in this lesson). That name was chosen so you could better understand.
In a production environment, however, the name you choose should re�ect it being a
(future) primary instance.

3. Select the appropriate IP address option for your destination instance. The options are
Private or Public (/vpc/docs/ip-addresses).

4. Con�gure the target instance with the same settings you used for the source instance. In
a production environment you would use the con�guration values as determined by the
test environment, as discussed in the Preparing a database migration
 (#preparing_a_database_migration) section.

5. Continue the con�guration by selecting a storage type and storage capacity.

�. Add optional Flag and Label con�gurations if needed.

7. Click Create & Continue. The following dialog appears:

https://cloud.google.com/vpc/docs/ip-addresses

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 25/44

�. Click Create Destination & Continue. Creating the destination takes a few minutes.

De�ne a connectivity method

In this section, you con�gure the connection to the source instance. After the target instance is
created, its outgoing IP address appears. The source instance must be able to accept
connections from this IP address.

1. In Cloud Console, navigate to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select an option from the Connectivity method menu to update the source instance
con�guration. Base your selection on the con�g-�le type you're using (pg_hba.conf
and/or postgresql.conf):

https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 26/44

Depending on how the source instance is con�gured you might have to restart it. This
section is the place for the optimization that was discussed in Restart the source
instance (#restart_the_source_instance). This restart enables all the con�guration changes
you made up to now to become effective.

If you only need to modify pg_hba.conf, then reloading the con�guration is su�cient. If
you need to change listen_addresses in postgresql.conf, then you must restart the
source instance.

3. Add a �rewall rule to allow incoming tra�c from the outgoing IP address of the target
instance on port 5432 (or any other port that you might have con�gured):

4. Click Save & Continue.

gcloud compute firewall-rules create pg-target-1 \

--allow tcp:5432 \

--source-ranges=<device-ip>

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 27/44

Test and create a migration job

This �nal step lets you test the con�guration and save or start the migration job. While not
required, con�guration testing is a best practice.

1. In Cloud Console, click Test Job:

Testing might take a while.

If an error occurs, you see a warning message that de�nes the problem.

For more information on debugging your errors see, Postgresql: Connection refused.
 (https://stackover�ow.com/questions/20825734/postgresql-connection-refused-check-that-the-
hostname-and-port-are-correct-an)

2. When the test succeeds, a message appears saying Tests passed successfully! You can
create this job without starting it or start it immediately.

3. Click Create Job. If you have not tested, the system displays a warning:

https://stackoverflow.com/questions/20825734/postgresql-connection-refused-check-that-the-hostname-and-port-are-correct-an

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 28/44

4. Click Cancel to cancel out of the message.

5. Click Create & Start Job. A different warning message displays:

�. Click Create & Start to start the migration if you are certain that the source databases are
ready to migrate.

If you aren't certain, or if you have to make further preparations—for example non-primary
key table preparation (#migrating-tables-without-pk)—cancel out of this error message, click
Save Job, and then click Create in the Create migration job dialog. This action brings you
back to the Database Migration page with the new migration job listed:

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 29/44

Preparing to run the database migration job

Before starting a database migration job, you must decide how to migrate tables without
primary keys (non-PK tables). In addition, you must be aware of how to deal with materialized
views, schema changes, and other aspects during migration.

The next sections discuss data types, database behavior, and how to make the target
databases be 100% consistent with the source databases. Skip the paragraphs that don't apply
to you.

Migrating tables without a primary key

When you start a migration job that contains one or more tables without a primary key, you see
a warning that says Keep in mind: Any tables on the source PostgreSQL database without
primary key constraints won't be migrated. Are you sure you want to start the job? After you've
started, however, there are no additional warnings or reports on tables without primary keys
(non-PK tables). Be aware that Database Migration Service doesn't move tables that don't have
primary keys (/database-migration/docs/postgres/migration-�delity#what_isnt_migrated). Manage
these types of tables yourself.

You have to decide on the best time to manually migrate the tables without primary keys.
Consider these two options:

Prepare non-PK tables before starting a migration job. If you know that a non-PK table
won't change until the migration completes, you can copy the data into a table with the
same columns plus a surrogate primary key. This table is called a transfer table. This

https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 30/44

approach migrates the data to the target database in the transfer table. Before the
cutover, you can create the corresponding non-PK table in the target database and copy
the data from the transfer table into the non-PK table. You can apply this approach to all
non-PK tables where the rows won't change during the migration.

Migrate non-PK tables during the migration job execution. If you know that a non-PK
table changes during the migration, then you can create a transfer table with the same
columns plus a surrogate primary key before you start the migration. This migration
choice helps ensure that the migration job knows about this transfer table. However, you
should only copy the data from the non-PK table into the transfer table when you know its
schema and data won't change. The latest point to copy the data is when all data has
been migrated, and shortly before the cutover.

These two approaches are outlined in the following sections. An alternative approach is to
migrate non-PK tables without the help of Database Migration Service using the import facility
of Cloud SQL (/sql/docs/postgres/import-export/importing).

Migrate non-PK tables before starting the database migration

To migrate non-PK tables of the source databases:

1. In Cloud Console, use SSH to connect to the Compute Engine instance.

2. Log in to the PostgreSQL shell:

3. Create a transfer table. In this case, a transfer table is created for the non-PK table notes:

4. Insert the rows of the non-PK table into its transfer table notes_transfer:

sudo -u postgres psql

CREATE TABLE notes_transfer (

 note VARCHAR(256),

 surrogate_id SERIAL PRIMARY KEY);

INSERT INTO notes_transfer (note)

 SELECT note FROM notes;

https://cloud.google.com/sql/docs/postgres/import-export/importing

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 31/44

5. Select the rows to check that the insert worked:

�. Ensure that the migration user has all necessary privileges for this new table and
sequence as well (use \dn to �nd the relevant schema):

7. Exit the PostgreSQL shell:

When the migration starts, the transfer table is migrated like any other regular table with
a primary key.

After the migration completes, insert trasfer-table data into the various target databases and
then drop the transfer table:

1. In Cloud Console, log in to the target replica following this procedure: Check the
migration status in the target instance (#check-target-migration-status).

The non-PK table was automatically created, but no data was migrated.

2. Insert the data from the transfer table into the non-PK table:

3. Drop the transfer table:

SELECT * FROM notes;

GRANT SELECT on ALL TABLES in SCHEMA <schema> to dbmig;

GRANT SELECT on ALL SEQUENCES in SCHEMA <schema> to dbmig;

exit;

INSERT INTO notes (note)

 SELECT note FROM notes_transfer;

DROP TABLE notes_transfer;

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 32/44

Now the data in the non-PK tables of the source databases exists in the target databases.

Migrate non-PK tables during database migration

The steps in this section are the same as the previous section. However, inserting the data
from the non-PK table into its corresponding transfer table occurs after the migration starts.
Only start the migration when you are sure that the data in the non-PK table won't change.

If the data on the source changes in the non-PK table, you can delete all rows from the transfer
table, and reinsert the data from the non-PK table. This action gives you the ability to correct
the contents without having to start the migration from the beginning.

Manage materialized views

Database Migration Service migrates the schema of materialized views in a database, but not
the data. See the bullet point on materialized views in the product documentation
 (/database-migration/docs/postgres/migration-�delity#what_isnt_migrated) for more information.

1. To list all materialized view names, run:

2. Run the following command before the application cutover for each materialized view in
every target database:

This command ensures that the materialized views are refreshed on the target
databases.

Manage schema changes

SELECT schemaname, matviewname

FROM pg_matviews;

REFRESH MATERIALIZED VIEW <view_name>

https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 33/44

Schema changes on source databases aren't automatically migrated by Database Migration
Serviceto the target databases. Migrate these changes manually, as outlined in What changes
are replicated during continuous migration (/database-migration/docs/postgres/faq#replicated) and
in Continuous migration: PostgreSQL
 (/database-migration/docs/postgres/migration-�delity#postgresql).

To make a schema change in a source database, follow these steps:

1. Stop all DML (database manipulation language) in the source database and wait for all
data from the source database to migrate to the target database. This ensures that both
the source and target database are quiet.

2. Change the schema on the source database and the target database.

3. Complete the changes in both the source database and target database before resuming
any DML on the source database.

You have two options to implement and execute DDL (data de�nition language) statements:

Use commands provided by the pglogical command
pglogical.replicate_ddl_command. See Continuous migration: PostgreSQL
 (/database-migration/docs/postgres/migration-�delity#postgresql) for examples.

Execute the DML statements directly without the pglogical command. This method is
preferred if you use a schema management tool. The only caveat is that the tool needs to
be able to implement the same change twice: once on the source database and once on
the target database.

Grant the role before running DDL on the target database
 (/database-migration/docs/postgres/migration-�delity#postgresql).

If you have tables without primary keys, and you use the transfer table approach, any change to
the base table must be applied to the transfer table.

Indirectly related to the execution of DDL statements is the following caveat. During the initial
load, the DDL statements might be blocked if they can't access a required lock. Diagnose
issues for PostgreSQL (/database-migration/docs/postgres/diagnose-issues) has a more detailed
description of an error that might occur on a source database.

Manage large objects

https://cloud.google.com/database-migration/docs/postgres/faq#replicated
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#postgresql
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#postgresql
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#postgresql
https://cloud.google.com/database-migration/docs/postgres/diagnose-issues

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 34/44

pglogical can't migrate large objects (https://www.postgresql.org/docs/current/largeobjects.html).
See What isn't migrated: PostgreSQL
 (/database-migration/docs/postgres/migration-�delity#what_isnt_migrated) for more information.
While pglogical doesn't migrate the rows of tables that contain large objects, a table is
created in the target database. If you have tables with large objects, you must transfer them
yourself, outside of Database Migration Service.

One approach to transfer large objects is to use pg_dump to export the table or tables that
contain the large objects and import them into Cloud SQL. This export must be done
separately for each database in the instance.

The following describes the process at a high level. The best time to execute these steps is
after the target instance is available for import and after promotion. For each source and target
database, determine all tables that contain large objects.

1. To try out the process (if you want), in Cloud Console, create an example table named
image with one row:

The insert statement adds one row to the table that contains an image �le. See SQL-
Oriented Large Object Functions (https://www.postgresql.org/docs/current/lo-funcs.html) to
better understand the basic SQL commands for large objects.

2. Use pg_dump to extract the table or several tables:

This command dumps the table image to a �le called dmspg_1.dump.

3. Transfer the dmspg_1.dump �le from the source system to a Cloud Storage bucket:

CREATE TABLE image (

 name text,

 raster oid);

INSERT INTO image (name, raster)

 VALUES ('beautiful image', lo_import('<path>/image.jpg'));

sudo pg_dump --blobs -t image -h localhost --username=postgres dmspg_1 > <pa

https://www.postgresql.org/docs/current/largeobjects.html
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated
https://www.postgresql.org/docs/current/lo-funcs.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 35/44

4. Import the dump:

5. Check if the table exists and is populated after it imports:

�. Display some initial bytes and compare them to the target, to ensure that the image
imported:

While this process is manual and has to be executed for each source and target
database, it lets you migrate tables with large objects.

You can perform the dump and import steps at any time. The safest time to perform
these steps is when you know that the tables containing large objects won't change.

Manage foreign data and extensions

PostgreSQL has a set of extensions
 (https://www.postgresql.org/docs/current/external-extensions.html). PostgreSQL provides these

sudo gsutil cp dmspg_1.dump gs://pg-objects

select * from image;

select lo_get(16951, 0, 1000);

https://www.postgresql.org/docs/current/external-extensions.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 36/44

extensions; there is also an ecosystem of extensions available from other organizations—
foreign data wrappers (https://www.postgresql.org/docs/current/ddl-foreign-data.html), for example.

For each extension that you use in the source instance, �rst ensure that the extension or an
equivalent is available in Cloud SQL for PostgreSQL (/sql/docs/postgres/extensions). If Cloud SQL
for PostgreSQL doesn't provide the extension, you must review the source instance and its
application clients to see if it's possible to remove the extension from the source instance.

Any data managed by extensions outside of PostgreSQL isn't migrated. You must migrate
those datasets independent of Database Migration Service.

Manage sequences

While Database Migration Service migrates sequences, the value of a sequence in the target
might be different from the value of the sequence in the source
 (/database-migration/docs/postgres/migration-�delity#what_isnt_migrated). In general, sequences in
the target have a larger value than those in the source.

To list all sequences in a database:

To check for the last value of a sequence (this example uses the sequence
public.notes_transfer_surrogate_id_seq):

To select the value of the sequence on the source, use this command. To select the value
on the target, change the parameters and run the command again. If it's important that a
sequence has the same value in the source and target, run the ALTER SEQUENCE
 (https://www.postgresql.org/docs/current/sql-altersequence.html) statement that best �ts your

situation.

Manage database users

SELECT schemaname, sequencename

FROM pg_sequences;

SELECT "last_value", log_cnt, is_called

FROM public.notes_transfer_surrogate_id_seq;

https://www.postgresql.org/docs/current/ddl-foreign-data.html
https://cloud.google.com/sql/docs/postgres/extensions
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated
https://www.postgresql.org/docs/current/sql-altersequence.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 37/44

Database Migration Service doesn't automatically move the database users of the source
instance and databases, as outlined in the Database Migration Service documentation
 (/database-migration/docs/postgres/migration-�delity#what_isnt_migrated).

To list all users in a PostgreSQL instance, run the following command at the PostgreSQL
command prompt:

You must create the users yourself on the target instance. See Creating and managing
PostgreSQL users (/sql/docs/postgres/create-manage-users) for more instructions.

Sta�ing the database migration job

After you have decided how to migrate tables without primary keys, you can start the migration
job. Follow these steps:

1. In Cloud Console, go to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select the migration job from the list of migration jobs by selecting the checkbox
associated with it.

3. Click the Start button, or select Start from the drop-down list on the right.

If an error occurs, a dialog explains what happened.

As the migration begins, the Starting dialog appears.

After the migration starts, the Running • Full dump in progress dialog appears.

While the migration job is running, the Running • CDC in progress dialog appears.

At this point, the migration job is running and data is migrating from the source databases to
the target databases.

Check the migration status in the target instance

\du

https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated
https://cloud.google.com/sql/docs/postgres/create-manage-users
https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 38/44

During the migration, you can log in to the target instance and check on the migration progress
by connecting to the various databases and selecting data from tables.

1. In Cloud Console, go to the Cloud SQL page:

Go to Cloud SQL (https://console.cloud.google.com/sql/instances)

2. Select the replica that represents the target instance:

3. Select the name (in this case pg-target-1) to view the instance page:

4. Scroll to the Connect to this instance section:

https://console.cloud.google.com/sql/instances

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 39/44

5. Select Connect using Cloud Shell. This action opens Cloud Shell. From there, you can
issue the usual commands to connect to the databases in the target instance. Use the
root password that you provided when specifying the target instance details for the
migration job.

It might be necessary for you to enable the Cloud SQL Admin API at your �rst sign in. If
you get a sign-in error, enable the Cloud SQL Admin API (/sql/docs/postgres/admin-api).

After you are connected, you can list the databases, connect to those and select data from the
various tables.

Quiescing, data validation, promotion, application cutover, and
database tuning

To continue to migrate data changes from the source databases to the target databases, the
migration job has to be running.

https://cloud.google.com/sql/docs/postgres/admin-api

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 40/44

At some point, unless you want to keep the migration running inde�nitely, you have to use the
target database as the new primary database. The following sections discuss the major steps
to accomplish that goal.

Incurring downtime for quiescing and data validation

Database Migration Service provides a minimum-downtime migration by migrating data while
applications use the source databases. However, to promote the target instance to be the new
primary instance, you must end changes to the source databases so that Database Migration
Service can migrate over any remaining changes.

In order to stop changes on the source databases, shut down all clients. This is called
quiescing the source database. After changes to the source databases are complete, Database
Migration Service migrates the remaining changes, ending the migration.

The most reliable way to determine that all data has been migrated is to make one last change
manually on one of the source databases, and wait for that change to appear in the
corresponding target database.

After the migration is complete you can validate that all data has been migrated correctly. One
possible approach to this optional step is to randomly select a few tables, and run a count
query on the source table and on the corresponding target table. The counts must be equal.

If you want to be thorough, write a script that compares the count of all tables in all databases.
If you want to go further, you could execute aggregation queries for tables with columns that
can be aggregated. In the extreme case, you would check that each row in the source and
target rows are equivalent.

To help ensure that the database migration didn't accidentally insert rows that violate table
constraints, you could validate that all table constraints are satis�ed.

The more validation you do the longer the source and target instances will be unavailable. The
least amount of downtime is when you don't validate, and you trust that the replication based
on pglogical works correctly. The longest downtime is when you establish equivalence on a
row by row basis across all tables of all databases.

Promote the migration job

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 41/44

After you quiesce the source database and after you perform all the validation you were
planning, it's time to promote the migration job. Promoting a migration job stops the migration
and promotes the target instance from being a replica to being a primary instance.

Promoting the migration job has no effect on the source instance. If for any reason any
database's content is changed in the source instance, that change won't be migrated. The
migration job is complete.

To promote a migration job, follow these instructions:

1. In Cloud Console, go to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select the name of the migration job (once the pointer hovers over the name, it changes
to a link). The Details page appears:

3. Select the Promote button. A dialog appears:

4. Select Promote. The status of the migration job changes to Running • Promote in
progress:

5. After the promotion �nishes, the migration job is complete:

The migration job promotion changes the target instance from a replica to a regular
primary instance. pg-target-1 was originally a replica of pg-target-1-master
(representing the source instance), now it's a standalone primary instance.

Since pg-target-1-master has served its purpose, you can delete it.

�. Select pg-target-1-master (it changes to a link once the pointer hovers over the name).
This brings you to the details page.

7. Click Delete and follow the instructions in the dialog that appears.

�. After the instance is deleted, the instance is removed from the instances list.

Application cutover to new primary databases

From the moment the migration job promotion completes, the target instance is the primary
instance. You now need to connect all applications to the new primary instance.

https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 42/44

In principle, you don't have to migrate applications when you migrate the instance. You can
migrate applications before the instance is migrated, while the instance is migrated, after the
instance is migrated, or not migrate at all. There are different approaches that depend on the
complexity of the applications, the availability of personnel, and the risk factors of a concurrent
migration.

Independent of the decision of when to migrate the application (or applications if there are
several), the application has to access the new primary instance instead of the source
instance. Ideally the connection is accomplished by a con�guration change, not by a change of
the application code.

Changes for all clients in the source instance aren't migrated to the new primary instance. It's a
best practice to establish an inventory of the clients of the source instance well ahead of the
cutover. Doing so lets you determine that the client can actually be con�gured to use the new
primary instance once it's available.

Instance and database tuning

While not strictly part of the database migration process, once you cutover the applications to
the target Cloud SQL instance you might need to tune the instance.

See Con�guring database �ags (/sql/docs/postgres/�ags) and Performance Tips
 (https://www.postgresql.org/docs/current/performance-tips.html) for more information.

Source instance management

After the migration job promotion completes, changes to any of the source databases in the
source instance aren't migrated.

Consider managing the source instance by disabling any non-read access. This action helps
ensure that no erroneous access takes place without being immediately detected.

For example, if applications are cut over by updating their con�guration �les with new
database connectivity speci�cation, it's entirely possible that one or more applications might
not be updated by omission. The same can happen with scripts that are still connecting to the
source instance.

The best time for disabling any non-read access (or all access) to the source instance is after
quiescing completes. This action helps ensure that no changes take place and that the cutover

https://cloud.google.com/sql/docs/postgres/flags
https://www.postgresql.org/docs/current/performance-tips.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 43/44

is consistent.

High availability and disaster recovery setup

The target instance con�guration options in Database Migration Service don't let you set up an
HA Cloud SQL for PostgreSQL instance or create read-replicas in the same or different regions.

If you need a HA instance, follow the instructions (/sql/docs/postgres/con�gure-ha#ha-existing) for
after the target instance was promoted. If you require read replicas, follow the instructions
 (/sql/docs/postgres/replication) to set up read replicas. Setting up read replicas is only possible
after the target instance has been promoted.

Cleaning up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial,
either delete the project that contains the resources, or keep the project and delete the
individual resources.

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

Go to Manage resources (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project that you want to delete, and then click Delete.

https://cloud.google.com/sql/docs/postgres/configure-ha#ha-existing
https://cloud.google.com/sql/docs/postgres/replication
https://console.cloud.google.com/iam-admin/projects

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 44/44

3. In the dialog, type the project ID, and then click Shut down to delete the project.

What's next

Learn more about Database Migration Service for PostgreSQL
 (/database-migration/docs/postgres).

Learn more about the gcloud commands supported by Database Migration Service
 (/sdk/gcloud/reference/database-migration).

Explore reference architectures, diagrams, tutorials, and best practices about Google
Cloud. Take a look at our Cloud Architecture Center (/architecture).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2021-07-29 UTC.

https://cloud.google.com/database-migration/docs/postgres
https://cloud.google.com/sdk/gcloud/reference/database-migration
https://cloud.google.com/architecture
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

